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Abstract

In this paper, we develop a novel method to detect the community structure in complex networks. The approach is based on 

the combination of the kernel-based clustering using quantum mechanics, the spectral clustering technique and the concept of the 

Bayesian information criterion. We test the proposed algorithm on Zachary’s karate club network and the world of American

college football. Experimental results indicate that our algorithm is efficient and effective at finding both the optimal number of 

clusters and the best clustering of community structures.
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1. Introduction

Complex networks are attracting increasing interests of scientists from physics and other fields. In 

the context of network theory, the term “complex network” refers to a network by virtue of certain 

non-trivial topological structures [1-4], which include a heavy-tail in the degree distribution, a high 

clustering coefficient, assortativity or disassortativity among nodes, community structures at many 

scales and evidence of a hierarchical structure. One of the key problems is how to detect community 

structures in complex networks, which have dense internal links and a lower density of external links.

Many studies have verified the community structure in various complex networks such as protein 

interaction [5], the worldwide web [6] and scientific collaboration [4, 7]. Clearly, the ability to detect 

community structure in a network has important practical applications and can help us understand the 

network system.

There are several empirical methods to detect community structures in complex networks.

Kernighan and Lin [8] proposed a heuristic procedure to produce a dimidiate network, and traditional 

spectral method [9, 10] was also a bisection algorithm. Newman and Girvan [4, 11] introduced the 

shortest-path betweenness algorithm to split the whole network into the disconnected communities, 

until the network is decomposed to components consisting of one single node. These methods have

been shown to be very powerful only when the number of the community as a priori knowledge is 

given. To overcome this limitation, lots of efficient heuristic methods have been proposed over the 

years. Newman and Girvan [12] devised a quantitative measure called modularity Q to evaluate the 

quality of dividing the nodes in networks into different communities. This method can select the 

optimal number of clusters by maximizing the modularity Q . Following this approach, many 

algorithms [13-16] have investigated different exploration to find the community structure while 

maximizing Q . On the other hand, computer science was also working on clustering of a particular 

instance of networks. A common tool used to address clustering of the complex network is spectral 

analysis [17-23], which is based on the analysis of the adjacency matrix and the hard clustering 

algorithms for exploring community structures. This kind of methods combine the power of spectral 
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analysis to reveal underlying structures, and they are not constrained by the iterative bisection, and not 

needing a priori information about the number of communities as the extra input.

Quantum clustering proposed by D. Horn [24-26] is a novel kernel-based clustering approach

using quantum mechanics. The approach introduces the Schrodinger partial differential equation to 

characterize a quantum system and calculate the potential function using the eigenstate of the quantum 

system. The approximation of eigenstate is obtained by summing up Gaussian kernel functions. The 

potential function derived from Schrodinger  partial differential equation is assimilated with the 

probability density function for datasets and act as a tool to find the clusters from datasets. The local 

minima of the potential function interpret the centers of the data samples corresponding to different 

clusters. Moreover, the number of cluster depends on the appropriate selection of the Gaussian kernel 

scale parameter   [25-29]. This issue was addressed by Varshavsky [31] who used a statistical 

approach based on the Bayesian information criterion (BIC) [30] to estimate the parameter  .

Our proposed algorithm begins by using spectral clustering analysis to form the input datasets for 

further clustering procedure, and then the quantum clustering algorithm is used to make division of 

community structures. The kernel scale parameter   is selected by the Bayesian information criterion. 

Because the lowest BIC score reflects the optimal selection of the parameter   and determines the 

best clustering function, we find the optimal number of community structures by minimizing the BIC 

score. When applied to two real-world networks in which community structures are already known, our 

method appears to give excellent agreement with the expected results. We also compare the new 

algorithm with Newman’s algorithm on these two networks datasets in terms of the modularity Q .

The remainder of the paper is organized as follows. In section 2, a general introduction to spectral 

clustering analysis is provided, while the nonparametric estimation approach derived from quantum 

mechanics is described in section 3. The proposed method for detecting community structure is detailed 

in Sections 4. The section 5 is contributed to experiments and discussions about our method. At last, 

the conclusions are drawn.

2. Spectral clustering analysis

Spectral clustering analysis focuses on the relationship between the community structure and the 

spectral property of the complex network. Spectral methods are based on the analysis of the adjacency 

matrix A of the network [21, 22], in which element ijA  is equal to 1 if node i points to node j

and 0 otherwise. Actually, instead of using the adjacency matrix A , it is more convenient for us to 

study three extending matrices derived from A , respectively named the Laplacian matrix D A , the 

normal matrix 1D A and the matrix 
1 1
2 2D AD

 
[19], where D is the diagonal matrix with 

elements 1

N
ii ijjD A  and N is the number of nodes in the network.

Though the matrix
1 1
2 2D AD

 
 has the same eigenvalues with the normal matrix 1D A , they

have different eigenvectors. It is easily to verify that after the rows of eigenvectors are normalized to 

length 1, the eigenvectors obtained from these two matrices are identical. Therefore, due to the 

complexity of computation, we discuss the normal matrix 1D A in the following part.

The normal matrix 1D A has always the largest eigenvalue which equals to one, associated to a 

trivial constant eigenvector, due to the row normalization of the adjacency matrix A . For a network 
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with the apparent cluster structure, the normal matrix has also a certain number 1k  of eigenvalues 

close to unit length, where k is the number of well defined communities. The very similar 

components of eigenvectors associated to these first 1k   nontrivial eigenvalues correspond to nodes 

within the same cluster. But in most common occurrences, communities cannot be simply detected by 

exploring the nontrivial eigenvectors. However, in an automatic manner, the use of the clustering 

algorithm is a natural way to identify communities from the components of nontrivial eigenvectors 

corresponding to nodes.

Furthermore, we would like to know how to evaluate the quality of the clustering of nodes. This 

problem is addressed by Newman and Girvan [12] who defined a measure of the quality of a particular 

division of a network, which gives the modularity Q

2 2( )ii i
i

Q e a Tre e                                  (1)

where e is a k k symmetric matrix whose element ije is the fraction of all edges in the network 

that link nodes in community i to nodes in community j , and 2e indicates the sum of the 

elements of the matrix 2e . The trace iiiTre e  represents the fraction of edges in the network that 

connect the nodes in the same community, and a clear division into communities should have a high 

value of this trace. The row (or column) sums i ijja e  gives the fraction of edges that connect to 

nodes in community i . 

The quantity Q measure the fraction of the inter-community edges minus the expected value of 

the same quantity in a network with the same community structures but random connections between 

the nodes. In practice, the high value of Q represents apparent community structures.

3. Quantum clustering algorithm

Quantum clustering algorithm proposed by D. Horn [24-26] is a novel kernel-based clustering 

approach using quantum mechanics. It focuses on the Schrodinger potential function ( )V x

provided by the Schrodinger  partial differential equation

2
2( ) ( ( ))

2
H x V x E

                                 (2)

where H is the Hamiltonian operator, E is an eigenvalue energy level, ( )x corresponds to the 

eigenstate of the given quantum system, ( )V x is the Schrodinger  potential and 2 is the 

Laplacian operator. The potential is always positive i.e. ( ) 0V x  .

Based on the quantum mechanics principles, the Schrodinger  partial differential equation 

characterizes a quantum system and the dataset can be seen as particles of the quantum system on 

orbits that obey the quantum physics laws [28, 29]. In quantum mechanics, the wave function ( )x

can be defined corresponding to the given potential and energy level, by solving the 

Schrodinger equation. While in the quantum clustering algorithm, the inverse problem is to be 

considered. By giving the wave function ( )x , the goal in quantum clustering becomes to estimate the 

quantum potential ( )V x , which characterizes the probability density function for data samples. 

Due to its smoothness and differentiability properties, the Gaussian kernel function
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2

( ) ( )
( ) exp

2

T
i ix x x x

G x


   
  

 
                           (3)

is assigned to each data sample , 1,2, ,ix i N  , where   is a kernel parameter called scale, width 

or bandwidth. Afterwards, the eigenstate function ( )x is approximated by

2
1

( ) ( )
( ) exp

2

TN
i i

i

x x x x
x



   
  

 
                            (4)

After replacing ( )x  from Eq. (4) into Eq. (2), we can solve the corresponding Schrodinger

potential ( )V x  assimilated with the probability distribution of the given data samples as

2 2

2 2

( ) ( )1
( ) ( ) ( ) exp

2 2 2 2

T
T i i

i i
i

x x x xd
V x E E x x x x

 
   

   
        

 
     (5)

Let us furthermore require that min 0V  , which sets the value 
2 2

min
2

E
 




                                   (6)

The probability distribution approximation by Eq. (5) and constraint Eq. (6) results in a smooth 

potential function that fits well with the data samples. The analogies exist between data samples and 

quantum particles. Quantum particles that are characterized by a certain state have equal potential, 

while data samples that are located nearby have close potential values. Another analogy is between 

particles which are characterized by low potential values and the local minima of the potential function 

specific to cluster centers. However, the approximation of the data probability distribution function 

depends on the choice of the parameter  .

4. Detecting the community structure in complex networks using quantum clustering

In this section, we use the quantum clustering approach to detect the community structure in

complex networks on the basis of preceding insights. Because the estimation performance of the 

potential function is controlled by a scale parameter  which can be observed from Eq. (4), the key 

to the approach is how to choose the appropriate kernel scale parameter  .

4.1 Kernel scale estimation

We note that, one of the difficulties within this kernel-based approach is how to select the scale 

parameter  . As expected, the kernel scale plays the role of a smoothing parameter, and there is a 

trade-off between sensitivity to noise at small  and over-smoothing at large  . Implicitly, the 

number of clusters in the data samples depends on the appropriate selection of the kernel scale 

parameter  .

The Bayesian information criterion (BIC) was proposed by Fraley and Raftery [30] in a 

model-based analysis that assumed the datasets follow Gaussian probability distribution, and used by 

Varshavsky [31] to select the kernel scale parameter   and assess the quality of clustering.

BIC is defined as follows

BIC 2 ( , ) log( ) 2 log ( | ) constantM Ml x m N p x M                     (7)

where ( , )Ml x  is the mixture log likelihood of the data x and the model  , which is maximized 

under the constraint that Mm (a function of the number of independent parameter), is minimized. 

Under the assumption that the model errors or disturbances are normally distributed, BIC becomes
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RSS
BIC log( ) logN K N

N
                              (8)

where N is the number of observation, equivalently, the sample size, K is the number of free 

parameters to be estimated. RSS is the residue sum of squares from the model

1

RSS ( ( ))
N

i i
i

I t x


                                  (9)

0 ( )
( ( ))

1 ( )
i i

i i
i i

t x
I t x

t x

 
     

                            (10)

where it  is the target value, 1,2, ,i N  .

The minimum of the BIC score reflects the optimal selection of the parameter   and the optimal 

number of clusters.

4.2 Algorithm

Fig. 1. Data flow of the proposed approach for detecting community structures

The proposed algorithm consists of the following steps:

(1) Form the input datasets according to the spectral analysis

(a) Given the input datasets. For complex networks, these datasets is described by the adjacency 

matrix such that 1ijA   if node i  and j  are connected by an edge and 0ijA   otherwise. 

(b) Define D  to be the diagonal matrix whose ( , )i i -element is the sum of A ’s i -th row which 

represents the degree of the node i  and afterwards construct the normal matrix 1D A .

(c) Find k  nontrivial eigenvalues of the normal matrix 1D A , where k  is the number of clusters 

and choose 1 2, , , ku u u , the k  eigenvectors attributed to the k  nontrivial eigenvalues 

(chosen to be orthogonal to each other in the case of repeated eigenvalues), then form the matrix 

1 2[ , , , ]kU u u u   by stacking the eigenvectors in columns.

(d) Treating each of the row of U  as a point in kR , form the input samples as vectors 

1 2( , , , )i i i ikx U U U  , 1, 2, ,i n 

(2) Select the optimal scale parameter  by minimizing the BIC score

(3) Find the quantum potential ( )V x assimilated with the probability distribution of the given datasets

(a) Compute the function 
2

1

( ) ( )
( ) exp

2

TN
i i

i

x x x x
x



   
  

 


(b) Compute the energy 
2 2

min
2

E
 




 



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

6

(c) Compute the potential 
2 2

( ) ( )1
( ) ( ) ( ) exp

2 2 2

T
T i i

i i
i

x x x xd
V x E x x x x

  
   

      
 



(4) The local minima of ( )V x interpret cluster centers.

(5) Finally, assign the original node i in the complex networks to cluster j if and only if the row i

of the matrix U  was assigned to cluster j .

5. Experiments and results

In this section, we test our algorithm on two real-word networks. One is the karate club [32], and 

the other is the American college football [33].

5.1 Zachary’s karate club

The well-known karate club network studied by Zachary [12, 32] was widely used as a test

network to indentify community structures. The network consists of 34 nodes demonstrating members 

in the karate club and 78 edges representing the friendship between club’s members. Due to a 

disagreement between the administrator of the club and the club’s instructor, the club eventually split 

into two smaller ones, centered round the administrator and the instructor. In Figure 2, we show the 

network, with the instructor and the administrator represented by nodes 1 and 34, respectively. Here we 

use an unweighted version of the network and apply our algorithm to it so as to extract community 

structures.

Fig. 2. The network of friendships between individuals in the karate club study of Zachary [12, 32]

Fig. 3. Functional representation of BIC for each         Fig. 4. Functional representation of the BIC for each 

nonparametric method according to the arbitrary value             nonparametric method according to the different value

  from 0.1 to 1                                  from 0.3 to 0.6



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

7

Fig. 5. Functional representation of the number of clusters and      Fig. 6. Functional representation of BIC and the modularity

the modularity according to the different value   from 0.3 to 0.6 according to the different value   from 0.3 to 0.6

Fig. 7. Functional representation of the number of clusters k      Fig. 8. The community structures of the Zachary’s karate 

and modularity Q for Newman’s algorithm [12] and our method      club detected by our method

Figure 7 shows how the modularity Q  varies with cluster k  for both of our algorithm and

Newman’s shortest-path betweeness algorithm [12]. As Newman pointed out, the optimal number of 

cluster k  can be obtained by selecting the level of the resulting dendrograms for which the 

modularity Q  is highest. For Newman’s algorithm, the best clustering is 4k  , 0.36654Q  ,

which can not correspond precisely with the actual number of the karate club.

Unlike the Newman’s algorithm which seeks the maximum of Q , our algorithm finds the optimal 

number of community structures and the best clustering by minimizing the BIC score, because the best 

quantum clustering function is determined by the minimum of the BIC score. The modularity Q is 

only used as a tool to compare the quality of the quantum clustering approach with Newman’s

algorithm. We note that, in the process of selecting the optimal parameter  , when the modularity Q

reaches the peak, the BIC score is not the lowest as shown in Figure 6. However, our algorithm aims to 

find the minimum of the BIC score. The best clustering found by our method is 2k  , 0.36111Q  .

Figure 8 shows the community structures of the karate club network detected by our method. The 

karate club network has been divided into two groups in which only node 3 is classified incorrectly.

5.2 American college football

We also apply our algorithm to the world of American college football [4, 33]. The unweighted 

network was drawn from the schedule of games played between 115 American college football teams.
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The nodes in this network represent college football teams and the edges represent the fact that two 

teams played games together. Because the twelve conferences to which each team belongs is known 

and because games are more frequent between teams of the same conference than between teams of 

different conferences, the community structures should be findable in the college football network.

Fig. 9. Functional representation of BIC according to the           Fig. 10. Functional representation of the BIC according                                

arbitrary  from 0.1 to 1                                     to the different value   from 0.25 to 0.4

Fig. 11. Functional representation of the number of clusters        Fig. 12. Functional representation of BIC and modularity

and modularity according to the different value   from          according to the different value   from 0.25 to 0.4

0.25 to 0.4

Fig. 13. Functional representation of the number of clusters k and modularity Q  for Girvan and Newman [4] and our method

Figure 13 shows how the modularity Q  varies with cluster k  for both of our algorithm as well 



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

9

as Girvan and Newman’s algorithm [4]. The best clustering for Newman’s algorithm is 6k  , 

0.59597Q  . Our method seeks to minimize the BIC score. We note that, the BIC score is not the 

lowest, when the modularity Q  reaches the peak, as shown in Figure 12. Applying our algorithm to 

this network, we find that it identifies twelve community structures with 0.59553Q   (see Fig. 14), 

which corresponds precisely with the actual number of conferences in the American college football 

league. But three teams of the Independent conference: Navy, Notre Dame and Connecticut do not 

belong to any of the twelve community structures. The other teams of the Independent conference are 

grouped with the Western Athletic conference and the Sunbelt conference. The Sunbelt conference is 

broken into two smaller conferences and grouped with teams of the Western Athletic conference and 

Independent conference. However, all other team assignments to community structures made by our 

algorithm are correct.

Fig. 14. Plot of community structures viewed in different colors for American college football obtained by our method

6. Conclusions

In this paper, we develop a new method to detect community structures in complex networks. The

approach combines quantum clustering algorithm, the spectral clustering technique and the concept of 

the Bayesian information criterion. Our approach works by using quantum clustering algorithm to find 

the strongly connected cores of community structures, which is characterized by the local minima of 

the quantum potential. We apply our method to two real-world networks, and compare experimental 

results with the known community structures. We find that in both cases the method identifies apparent

community structures. Some extensions or improvements of the proposed method can be considered

further, and we hope to generalize the method to handle both weighted and directed networks in future.
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